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Abstract. We discuss various aspects of the transition from Lagrangian to Hamiltonian equations
for systems with general (nonlinear) non-holonomic constraints. The emphasis is first on
constructing the reduced dynamics on the constraint submanifold, and then trying to start a
Hamiltonization procedure from there. We prove a theorem concerning the regularity which is
required to obtain a unique second-order dynamics on the constraint submanifold, and we show
that the same condition allows the transition to a Hamiltonian picture. Throughout the analysis,
different degrees of generality are discussed.

1. Introduction

In a number of recent contributions, we have analysed various aspects of the geometry of
non-holonomic systems. In [16], we considered Lagrangian systems subjected to generalized
C̆aplygin-type constraints. To be precise, letL(t, qA, q̇A) be the Lagrangian, withA =
1, . . . , n, and assumem of the velocitiesq̇a are given in terms of then−m remainingq̇α by
relations of the form

q̇a = Baα(t, q)q̇α +Ba(t, q) a = 1, . . . , m. (1)

Classically, we would then make use of Lagrange multipliers to write equations of motion of
the form

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα
= −λa Baα

d

dt

(
∂L

∂q̇a

)
− ∂L

∂qa
= λa.

However, if we are not interested in the reaction forces caused by the constraints, it is very
easy to eliminate the multipliersλa. With

L(t, qA, q̇α) = L(t, qA, q̇α, Baβ q̇β +Ba)

we obtain a reduced dynamical problem described by the constraints, together with the second-
order equations

d

dt

(
∂L

∂q̇α

)
= Xα(L) +Caα

∂L

∂q̇a
(2)
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where

Xα = ∂

∂qα
+Baα

∂

∂qa

Caα = Ḃaα −Xα(Baβ q̇β +Ba)

and the constraints are also used to substitute for theq̇b in ∂L/∂q̇a andCaα . This procedure
is described, for example, in the classical textbook of Neimark and Fufaev [13] for a
generalization of̆Caplygin’s equations which is attributed to Voronec.

In [16], we describe a geometrical framework for this situation. We assume that the space
E with coordinates(t, qA) is fibred over a manifoldM with coordinates(t, qα), such that
bothE andM are fibred overR, so that we have fibrationsπ : E → M, τ0 : M → R
andτ = τ0 ◦ π : E → R. The constraints can then be considered as being defined by a
connectionσ onπ , which determines a section of the bundleJ 1τ → π∗J 1τ0 whose imageJ 1

σ

is the constraint submanifold where the reduced dynamics takes place. The purpose of [16]
was to show that, if equations (2) can be solved for theq̈α, the resulting second-order vector
field0 living on J 1

σ can be obtained directly from the kernel of a certain 2-form�M . Clearly,
if this route is taken towards the construction of the equations of motion, no regularity of
the unconstrained LagrangianL has to be assumed: we need only that the Hessian ofL is
non-singular.

In [22], we consider the more general set-up ofm linear (or, more precisely, affine)
constraints

AaA(t, q)q̇
A + ba(t, q) = 0 a = 1, . . . , m

where the usual assumption is that the matrix(AaA) has rankm. Locally, therefore, we can
always write the constraints in a form such as (1), but no fibration is assumed to be given
a priori. Considering a LagrangianL onJ 1τ with its associated Poincaré–Cartan 1-form and
2-form

θL = L dt +
∂L

∂q̇A
(dqA − q̇A dt) ωL = dθL (3)

we show that, starting from the pullbacki∗ωL on the constraint submanifold, there is a unique
constraint 1-formη such that the 2-form

� = i∗ωL − dt ∧ η
has just one second-order differential equation field (SODE field)0 in its kernel. If a fibration
E → M is chosen, this0 is the same as that spanning the kernel of the corresponding
�M mentioned above. The regularity assumption we take in this construction is that the
unconstrainedL should be positive definite (a common assumption, see, e.g., [24,25]).

Many authors have already discussed how one can set up a Hamiltonian theory of non-
holonomic systems geometrically (see e.g. [1–3,5,7,9,23,26]). In spite of certain differences
in the general approach, what most of these treatments have in common is that the Legendre
transform related to the original unconstrained Lagrangian is the starting point of the analysis,
and a reduction process to the dynamics on the constraint submanifold (similar to that described
above) is then repeated on the Hamiltonian side. This means, in particular, that a form of
regularity will be needed forL, possibly supplemented by further conditions required for
the reduction. If, however, there is a direct geometrical way of producing the right reduced
Lagrangian picture, then it is natural to wonder whether the Hamiltonization procedure cannot
be started directly from there. This would then be in accordance with the remark made in [5]
that, strictly speaking, we should be concerned only with the regularity of the restriction of the
Legendre transform to the constraint submanifold.



Hamiltonization of non-holonomic systems 6871

To make this idea more concrete, assume we are again in the situation of a system with
constraints of the form (1), and know of the reduced second-order equations (2) which complete
the dynamical equations. Then, naively, what we would do from an analytical perspective to
arrive at Hamilton’s equations would go as follows. Define momentum variables

Pα = ∂L

∂q̇α

and assume these relations can be inverted to obtain theq̇α, say as

q̇α = ρα(t, qA, Pβ).
Define the reduced Hamiltonian function as

H(t, qA, Pβ) = Pαρα − L(t, qA, ρβ).
It is then easy to verify that we have the following identities:

∂H

∂qA
≡ − ∂L

∂qA

∂H

∂Pα
≡ ρα

from which it follows that the set of equations (1), (2) can equivalently be written in the form

q̇α = ∂H

∂Pα
(4)

q̇a = Baα
∂H

∂Pα
+Ba (5)

Ṗα = −Xα(H) +

(
i∗
∂L

∂q̇a

)
(t, qA, ρα) Caα. (6)

In the functionsCaα appearing on the right-hand side of (6), which were introduced above, it is
of course understood that the derivatives of theqA are replaced by the right-hand sides of the
preceding equations. Note that such a passage to a ‘canonical form of the equations of motion’
is described in the classic book [13] for the special case of so-calledC̆aplygin equations, where
neitherL nor the constraint equations depend on the variablesqa (or on time).

The point to observe here is that this transition to Hamilton-like equations is based on
a Legendre transform coming from the reduced LagrangianL, so that it requires the non-
singularity of the Hessian ofL. Part of what we want to achieve in the present paper is to give
a geometrical construction of this transition. But the ambition is to do it at the same time for
the more complicated case of general nonlinear non-holonomic constraints. In that respect,
note that in [17] one of us has generalized the direct geometrical construction of a reduced
second-order vector field to the case of nonlinear constraints of the form

q̇a = ga(t, qA, q̇β).
The regularity assumption which turns out to be relevant for that purpose has the following
rather unfamiliar coordinate expression:

det

(
∂2L

∂q̇α∂q̇β
−
(
i∗
∂L

∂q̇a

)
∂2ga

∂q̇α∂q̇β

)
6= 0. (7)

Among other things, here we will give a geometrical interpretation of this regularity condition,
and present a procedure of Hamiltonization of the dynamics which works under this assumption
only, without recourse to the unconstrained LagrangianL. At the same time, we shall extend
the results of [22] to the case of nonlinear constraints, and in fact show also that this construction
can be carried out under milder regularity assumptions than those of [22].
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We should remark that nonlinear non-holonomic constraints do not occur frequently in real
physical problems and there is little agreement in the literature about the right mathematical
model to incorporate them. The most widely used model is one which makes use of a
formulation called ‘Chetaev’s rule’. In classical terms, this rule can be interpreted as extending
the definition of the concept of ‘virtual velocities’ to the case where nonlinear constraints are
present. If these constraints are described by relations of the formGa(t, qA, q̇A) = 0, Chetaev’s
rule stipulates that virtual velocitieswA should satisfy(∂Ga/∂q̇A)wA = 0; the assumption
is then that d’Alembert’s principle remains valid, stating that the total virtual power of all
reaction forces is zero. The least one can say is that this model incorporates those for linear
or affine non-holonomic constraints which are commonly accepted as appropriate for many
circumstances. Most authors also accept the more general model, but criticism about its
physical correctness has been formulated by, for example, Pironneau [15]: a similar criticism
can be found in recent work by Marle [10], who also formulates some interesting alternatives.
Nevertheless, the model we adopt in the present paper is that associated with Chetaev’s rule.
Its geometrical implementation is carried out by the construction of the so-called ‘Chetaev
bundle’, a terminology introduced in [12]. This terminology is in common use for the case of
affine constraints, and the fact that one basically carries out the same construction for nonlinear
constraints can be seen as a good reason for examining this model from a purely mathematical
perspective.

The scheme of the present paper is as follows. In section 2 we recall a geometrical
way of modelling velocity-dependent constraints for time-dependent second-order dynamical
systems. First, with a view to the later discussion of the Hamiltonization of constrained
Lagrangian systems, we review some generalities concerning jet spaces and their duals.
Next we consider affine constraints, and then we discuss how this picture is amended for
general (nonlinear) constraints. In section 3 we state and prove, for Lagrangian systems
with non-holonomic constraints, a generalization of the main result of [22]: this concerns
a characterization of the reduced second-order dynamics on the constraint submanifold as
the unique SODE in the one-dimensional kernel of a certain 2-form. In section 4, we recall
first the standard procedure of passing from Lagrange’s to Hamilton’s equations for time-
dependent systems. We then see how this procedure can be adapted to pass from a reduced
Lagrangian dynamics on the constraint submanifoldC to a Hamilton-like system on legL(C).
We shall of course verify that these geometrical constructions match the observations made in
this introduction. In section 5, we consider more particularly the case where the constraints
are defined by a connection (or ‘parametrized connection’). The last two sections contain
considerations on the coordinate calculations involved and some illustrative examples.

2. Time-dependent non-holonomic constraints

Let τ : E → R be a bundle, and letJ 1τ be its first jet manifold. J 1τ provides the
natural framework for describing the dynamics of a time-dependent mechanical system, with
E representing the configuration space-time manifold of the system. Before discussing the
notion of (velocity-dependent) constraint, we first review some aspects concerning jet spaces
and their duals, thereby fixing some notation that will be used later on. For more details we
refer to [20,21].

2.1. Jets and duals

From the general theory of jet bundles we know thatτ1,0 : J 1τ → E is an affine bundle
modelled on the vector bundleV τ → E of tangent vectors onE that are vertical toτ .
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Alternatively, we may consider it as an affine sub-bundle of the tangent bundleTE → E.
With coordinates(t, qA) onE, (t, qA, q̇A) onJ 1τ and(t, qA, ṫ , q̇A) onTE, we may describe
J 1τ as the submanifold ofTE given byṫ = 1. If dimE = n + 1, then dimJ 1τ = 2n + 1 and
dimTE = 2n + 2. We also recall thatJ 1τ admits a canonical vector valued 1-formS, which
generalizes the ‘vertical endomorphism’ on a tangent bundle and is given by

S = θA ⊗ ∂

∂q̇A
(8)

whereθA = dqA − q̇A dt are the contact forms.
For any affine spaceA of dimensionn, its extended dualA† is the(n + 1)-dimensional

vector space of all real-valued affine functions onA. If A is an affine subspace of the(n + 1)-
dimensional vector spaceV thenA† ∼= V ∗, because for each linear functionalα ∈ V ∗ the
restrictionα|A is an affine function onA, and this correspondence is an isomorphism. The
dual of A is then then-dimensional vector spaceA∗ defined byA∗ = A†/A◦, whereA◦ is the
one-dimensional vector subspace ofA† containing the constant functions onA.

We may now apply this toJ 1τ andTE. The(2n + 2)-dimensional extended dual ofJ 1τ ,
with fibre dimension(n+1), is just the cotangent bundleT ∗E, and the(2n+1)-dimensional dual
J 1τ ∗ is the quotient ofT ∗E by functions constant on the fibres ofJ 1τ , so that we may write
J 1τ ∗ ∼= T ∗E/〈dt〉 = V ∗τ . Here,〈dt〉 stands for the bundle overE whose fibre ata ∈ E is the
one-dimensional vector space spanned by the cotangent vector dta, so thatV ∗τ is the bundle
of ‘vertical cotangent vectors’ onE. There are clearly natural projectionsT ∗E→ J 1τ ∗ → E.
With coordinates(t, qA) onE, the coordinates onT ∗E are(t, qA, p, pA) and those onJ 1τ ∗

are(t, qA, pA).

2.2. Affine constraints

Let C → E be an affine sub-bundle ofJ 1τ → E with fibre dimensionn − m. We shall call
C aconstraint submanifoldof J 1τ : this reflects the fact that, later on,C will be interpreted as
representing some external (velocity-dependent) constraints imposed on a Lagrangian system
defined onJ 1τ .

The sub-bundleC → E gives rise to a distributionC onE in a very straightforward and
geometric way. The inclusionJ 1τ ⊂ TE means thatC → E is also an affine sub-bundle of
TE → E, and so we may letC → E be the vector sub-bundle spanned byC; C has fibre
dimensionn − m + 1. Now choose coordinates(t, qα, qa) onE such thatC is described by
equations of the form

q̇a = Baα(t, qβ, qb)q̇α +Ba(t, qβ, qb)

where the functionsBaα andBa are defined locally onE. (We do not at this stage suppose
thatE is fibred over another manifoldM, but we may verify that the bundle condition onC
guarantees the existence of suitable local coordinates.) In such a coordinate system, the points
of C may be described as tangent vectors onE of the form

∂

∂t
+ q̇α

∂

∂qα
+ (q̇αBaα +Ba)

∂

∂qa

so that the vector sub-bundleC is spanned by

∂

∂t
+Ba

∂

∂qa

∂

∂qα
+Baα

∂

∂qa
.

The annihilatorC
◦ ⊂ T ∗E is then spanned by theconstraint forms

ηa = dqa − Baα dqα − Ba dt.



6874 D J Saunders et al

Of course we can also obtainC
◦

using the ‘Chetaev bundle’ approach (see, e.g., [11,12]),
by noting thati∗S∗T ◦C is a co-distribution onC that (in this affine case) is basic overE, and
so projects to the same co-distributionC

◦
. Here,i : C ↪→ J 1τ denotes the natural inclusion

map,S is the vertical endomorphism (8) andT ◦C is the annihilator ofT C in T ∗J 1τ . The
relationship between the two approaches for obtainingC

◦
will become clearer when we look

at general constraints.
One property ofC worth noting is that it is always ‘transverse to the fibrationE → R’,

i.e.C +V τ = TE, so that the fibre dimension ofC ∩ V τ is n−m. The dual statement is that
C
◦ ∩ 〈dt〉 = {0}, so that the fibre dimension ofC

◦ ⊕ 〈dt〉 is m + 1. These observations tell
us how to run the construction in the opposite direction: given a vector sub-bundleC ⊂ TE
of appropriate fibre dimension transverse to the fibrationE→ R, or of course a suitable dual
bundle spanned by some ‘constraint forms’, we reconstruct the constraint submanifoldC by
definingC = C ∩ J 1τ .

We can now see how to represent the extended dualC† of the constraint submanifold: it
is simply the total space of the dual vector bundleC

∗ → E, and we may observe that this
is naturally isomorphic to the quotient bundleT ∗E/C

◦ → E by the following argument. If
j1
t γ ∈ C and [ε] ∈ T ∗E/C◦, let ε ∈ T ∗γ (t)E be a representative of [ε]; any other representative

is of the formε + η whereη ∈ C◦, so we may define〈j1
t γ , [ε]〉 without ambiguity to equal

〈j1
t γ , ε〉. With coordinates(t, qα, qa, p, pα) on the quotient bundle,

〈j1
t γ , ε〉 = q̇α(j1

t γ )pα(ε) + p(ε)

which shows indeed that [ε] defines an affine function on the fibre ofC overγ (t) ∈ E and,
hence, belongs toC†. Once again, all this projects toJ 1τ :

T ∗E J 1τ ∗ ∼= T ∗E/〈dt〉

C† ∼= C∗ ∼= T ∗E/C◦ C∗ ∼= T ∗E/(C◦ ⊕ 〈dt〉)

-

-

? ?

2.3. General constraints

For the general case we letC → E be a (not necessarily affine) sub-bundle ofJ 1τ with fibre
dimensionn − m and natural inclusion map again denoted byi : C ↪→ J 1τ , and we write
ρ : C → E for the restriction ofτ1,0 to the constraint submanifoldC. This will give rise
to a ‘distribution alongρ’: a correspondence assigning, to each pointj1

t γ of C, a subspace
of Tγ (t)E. We may also regard this correspondence as determining a sub-bundleC of the
pull-back bundleρ∗TE.

The ‘Chetaev bundle’ approach to this is straightforward:i∗S∗T ◦C is a co-distribution on
C that is, in general, semi-basic rather than basic overE. If we are able to choose coordinates
(t, qα, qa) onE such that, in terms of the induced bundle coordinates onJ 1τ , the fibres ofC
are determined by equations in solved form as

q̇a = ga(t, qα, qb, q̇α) (9)

(note that it may not always be possible to find such coordinates onE), then the co-distribution
is spanned locally by the constraint forms

ηa = dqa − ∂ga

∂q̇α
dqα −

(
ga − q̇α ∂g

a

∂q̇α

)
dt. (10)
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We may clearly regard this as a co-distribution alongρ (or, in other words, a sub-bundleC
◦

of ρ∗T ∗E); its kernel is spanned by

Xα = ∂

∂qα
+
∂ga

∂q̇α

∂

∂qa
X0 = ∂

∂t
+

(
ga − q̇α ∂g

a

∂q̇α

)
∂

∂qa
(11)

which are vector fields alongρ; they locally generate the distributionC. Note that we may
replaceX0 by

X0 + q̇αXα = ∂

∂t
+ q̇α

∂

∂qα
+ ga

∂

∂qa

which is just the total time derivative d/dt restricted toC.
The distributionC can also be obtained without looking at dual structures, by using the

following approach. At each point ofJ 1τ , the vertical tangent space overE is isomorphic to
the vector space upon which the affine fibre ofJ 1τ through the chosen point is modelled: in
other words,V τ1,0

∼= τ ∗1,0(V τ) as bundles overE. We may therefore consider the image of
T C ∩ V τ1,0 under this isomorphism: it is the sub-bundle ofτ ∗1,0(V τ)

∣∣
C
= ρ∗(V τ) spanned

locally by theXα, and so is justC ∩ ρ∗(V τ). We may then recoverC from this by its direct
sum with〈d/dt |C〉.

Although these two approaches may seem quite distinct, they are actually dual to each
other. The isomorphismV τ1,0

∼= τ ∗1,0(V τ) is just the inverse of the vertical lift (in the context
of affine bundles rather than vector bundles) and so it is the essential ingredient of theS tensor
whose action on cotangent vectors is used to construct the Chetaev bundle. In the special case
when the constraints are affine, the fibres of the sub-bundleC ⊂ ρ∗TE = C ×E TE do not
depend on the choice of point in any given fibre ofC and, therefore, we may regardC as a
sub-bundle ofTE and construct it directly as described in the previous section. In summary,
we have

C ⊂ ρ∗TE C
◦ ⊂ ρ∗T ∗E

in the general case, and

C ⊂ TE C
◦ ⊂ T ∗E

in the affine case.
As mentioned above, it may not always be possible to find coordinates onE such that the

expression (9) forC in solved form is valid for complete fibres ofρ: consider, for example,
E = R × R3 with coordinates(t, x, y, z) and letC be the submanifold ofJ 1τ given by
ẋ2 + ẏ2 = 1 + z2. In such a case we cannot find constraint formsηa defined on complete
fibres ofρ. (This topological complication does not arise for affine constraints.) We may
nevertheless, even in the general case, find forms spanning the Chetaev bundle locally onC.
Indeed, take a pointξ ∈ C and suppose thatC is defined in a neighbourhood ofξ bym relations
Ga(t, qA, q̇A) = 0, where the superscripta simply numbers the equations and does not refer
to a particular choice of coordinates onE. At points ofC belonging to that neighbourhood of
ξ , the Chetaev bundle is spanned by the formsi∗S∗ dGa, namely

i∗
(
∂Ga

∂q̇A
θA
)
.

In the example given above, the Chetaev bundle would be one-dimensional and spanned by
the single formi∗(ẋ dx + ẏ dy − (ẋ2 + ẏ2) dt). AsC → E is a sub-bundle ofJ 1τ → E, the
rank of the matrix(∂Ga/∂q̇B) in the neighbourhood ofξ must bem. If, further, we suppose
that we have ordered theqA coordinates so that the rank of the sub-matrix(∂Ga/∂q̇b), for
a, b = 1, . . . , m, ism at the pointξ itself, then this condition must also hold in a (possibly
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smaller) neighbourhoodU of ξ . PuttingCU = U ∩ C, it follows from the above that the
Chetaev bundle onCU is spanned by the 1-forms

i∗
(
∂Ga

∂q̇b
θb +

∂Ga

∂q̇β
θβ
)
.

As (∂Ga/∂q̇b) is non-singular onU , we may define functionsBbβ onU by

∂Ga

∂q̇b
Bbβ = −

∂Ga

∂q̇β

so that, onCU , the Chetaev bundle is spanned by the equivalent set of 1-forms

ηa = i∗(θa − Baβθβ).
The regularity of the matrix(∂Ga/∂q̇b) further implies that the relationsGa = 0 can be

solved for thėqa so that, upon further restrictingU if necessary,CU is determined by relations
of the formq̇a = ga(t, qα, qb, q̇α). It is then straightforward to check that the functionsBaα
are given explicitly by

Baα =
∂ga

∂q̇α

and so we see again that the constraint 1-formsηa onCU can be given by expression (10).
In summary, the previous discussion shows that, in the case of general constraints, the

constraint relations and the generating forms of the corresponding Chetaev bundle can always
be represented by expressions of the form (9) and (10) respectively. However, depending on
the topology of the constraint submanifold, these expressions may be valid for complete fibres
of C, or merely in an open neighbourhood of each of its points.

Finally, we note also that, for general nonlinear constraints, it does not make sense to work
backwards from the distributionC to the constraint manifold (or from the Chetaev bundle to
the constraint manifold) because both have to be specified at points ofC, and so carry the
manifold with them automatically.

3. Lagrangians and constraints

Now suppose we are given a Lagrangian system, with LagrangianL : J 1τ → R, which is
subjected tom velocity-dependent constraints modelled by a constraint manifoldC ⊂ J 1τ

as described in the previous section. In [22] we saw that, in the affine case, ifL satisfies a
certain regularity condition then there is a unique constraint formη onC such that the 2-form
i∗(ωL)− dt ∧ η contains a unique SODE field0 in its kernel. In that paper, we required the
Hessian ofL to be positive definite, although the proof of the theorem required only that the
Hessian ofL|C be non-degenerate. The purpose of this present section is twofold: first, we
shall show that it is possible to amend that proof carefully so that it also applies to the case of
general constraints; and secondly, we shall derive weaker regularity conditions under which
the theorem still holds. In addition, we shall see that the second-order nature of the vector
field we obtain is a consequence of regularity, and does not need to be assumeda priori.

According to the discussion in the previous section, in the case of general (nonlinear)
constraints we can always find an open neighbourhood of any point ofC on which the
constraints can be represented by equations of the form (9). In this section we restrict
consideration to such a neighbourhoodU , and to its intersectionCU with C. The Chetaev
bundle is spanned onCU by them 1-forms (10). In what follows we shall always use the
shorthand notation

Baα =
∂ga

∂q̇α
Ba = ga − Baαq̇α (12)
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which is in agreement with the notation in the affine case.
The essential tool we use in our discussion is an(n−m)× (n−m)matrix which turns out

to be as important to the study of constrained systems as the Hessian ofL is to unconstrained
systems, and which we will call thek-matrix of the system(L,C). In geometrical terms,
we consider the symmetric bilinear formg derived fromL and written in coordinates as
g = gABθA ⊗ θB , where

gAB = ∂2L

∂q̇A∂q̇B

is the Hessian ofL (see, for example, [19]). Thek-matrix of (L,C) is the coordinate
representation obtained when the action ofi∗g, regarded as a 2-covariant tensor field along
ρ, is restricted to vector fields alongρ whose vertical lifts are tangent toC and which are
annihilated by dt . The vector fieldsXα (see equations (11)) form a basis for these, and the
k-matrix of (L,C) is therefore given by

kαβ = (i∗g)(Xα,Xβ).
In terms of the Hessian, if we definehαβ = i∗(gαβ)+Bbβi∗(gαb) andhaβ = i∗(gaβ)+Bbβi∗(gab)
thenkαβ = hαβ + Baαhaβ . For affine constraints,kαβ is just the Hessian of the constrained
LagrangianL, whereas for general constraints this is no longer the case and we find instead
that

kαβ = ∂2L

∂q̇α∂q̇β
−
(
i∗
∂L

∂q̇a

)
∂2ga

∂q̇α∂q̇β

which is precisely the matrix mentioned in the introduction (see equation (7)).
Before stating the main result of this section, let us first fix some terminology. Assuming

the constraints are written in the form (9), a vector field0 on the constraint manifoldC will
be called asecond-order differential equation(SODE)field onC if it satisfies the following
conditions:

〈0, dt〉 = 1 〈0, i∗θα〉 = 0 〈0, ηa〉 = 0.

The last of these restrictions merely expresses the fact that we want0 to be a vector field living
on the constraint manifold, so that its integral curves will be curves inE whose prolongations
lie in C. The true second-order character is therefore expressed by the middle condition.

Note that such a vector field can always be extended locally to a genuine second-order
vector field onJ 1τ , defined on a neighbourhood ofC, which at each point ofC is tangent toC.

Theorem 1. LetL : J 1τ → R define a Lagrangian system, subject to constraintsC. If thek-
matrix of the system(L,C) is non-singular then there is a unique vector field0 onC satisfying
the conditions

1. 〈0, dt〉 = 1;
2. 〈0, η〉 = 0 for every constraint formη;

and such that

3. 0 i∗ωL is a constraint form, whereωL is the Poincaŕe–Cartan 2-form ofL and
i : C → J 1τ is the inclusion.

In addition,0 is then necessarily a SODE field onC.

Proof. To prove this result, note that (in coordinates onU ) the Poincaŕe–Cartan 2-formωL
may be written as

ωL = ∂2L

∂qA∂q̇B
θA ∧ θB + gAB dq̇A ∧ θB + TB dt ∧ θB
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for some functionsTB , the explicit form of which is of no importance here. If0 is a vector
field onC satisfying the first two conditions of the theorem then, at points ofCU ,

0 = ∂

∂t
+ 0α

∂

∂qα
+
(
ga +Baα(0

α − q̇α)) ∂

∂qa
+ F

α ∂

∂q̇α

so that

0 i∗ωL
mod dqA,dt= −i∗(gAB)〈0, i∗θB〉i∗ dq̇A

= −(i∗(gAβ) +Bbβ i
∗(gAb))(0β − q̇β) i∗ dq̇A

= −(0β − q̇β)(hαβ i∗ dq̇α + haβ i
∗ dq̇a).

Sincei∗(dq̇a − dga) = 0, we find that

i∗ dq̇a
mod dqA,dt= Baα i

∗ dq̇α

so that

0 i∗ωL
mod dqA,dt= −(0β − q̇β)(hαβ +Baαhaβ)i

∗ dq̇α

= −(0β − q̇β)kαβ i∗ dq̇α.

As 0 i∗ωL is required to be a constraint form, the terms ini∗ dq̇α should vanish. The non-
singularity of thek-matrix therefore implies that0β = q̇β so that the vector field0, if it exists,
is necessarily a SODE. The contraction of0 with i∗ωL, now written out in full, therefore
becomes

0 i∗ωL =
(
i∗(gAB)〈0, i∗ dq̇A〉 + (i∗TB)

)
i∗θB

and the only undetermined components of0 are the ‘force functions’F
α

given by

F
α = 〈0, i∗ dq̇α〉.

We find that

〈0, i∗ dq̇a〉 = BaαF
α

+Wa

where the functionsWa do not depend on the yet to be determined functionsF
α
, and we obtain

0 i∗ dθL =
(
i∗(gab)(BaαF

α
+Wa) + i∗(gαb)F

α
+ i∗(Tb)

)
(ηb +Bbβi

∗θβ)

+
(
i∗(gaβ)(BaαF

α
+Wa) + i∗(gαβ)F

α
+ i∗(Tβ)

)
i∗θβ

modηb= (kαβF
α

+ i∗(Tβ) +Bbβi
∗(Tb) + haβW

a)i∗θβ.

With a regular system, we see that we can make a unique choice of force functionsF
α

so
that the coefficients of thei∗θβ in the above expression for0 i∗ωL vanish. For this choice
of F

α
we then find

0 i∗ dθL = η
for some constraint formη which is a linear combination of theηa.

In summary, we have shown that under a certain regularity condition we can locally
construct a unique constraint 1-formη and a unique SODE field0 such that0 (i∗ dθL−dt ∧
η) = 0. Uniqueness implies that we may glue together these local solutions to give a global
constraint form and SODE field onC. �
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We shall say that the constrained Lagrangian system isregular at a point ofC if the
matrix (kαβ) has maximal rank(n−m) at that point. The constrained Lagrangian system will
be calledregular if it is regular at each point ofC.

One further remark on regularity is perhaps worth making here. If the Hessian ofL is
non-degenerate then we may find the unconstrained Euler–Lagrange field0L on J 1τ . The
difference0L|C − 0 is then a vector fieldV alongC satisfyingV dθL|C = η, whereη
represents the force exerted by the constraint. We cannot carry out the construction in this way
if the Hessian ofL is degenerate at points ofC: although the constraint formη is well-defined,
the corresponding vector fieldV might not be. A similar comment also applies, for instance,
to the approach using almost-product structures (cf [7,8]); this also requires the Hessian ofL

to be non-degenerate at points ofC. Specifying thatL be positive-definite, as is frequently
done in treatments of non-holonomic mechanics, is a convenient way of ensuring that both
gAB andkαβ are non-degenerate, although of course it is not a necessary condition.

4. The Hamiltonian description of constrained systems

Before studying the transition from the reduced Lagrangian dynamics of a constrained system
to an equivalent Hamiltonian description, we first recall some general aspects concerning the
passage from the Lagrangian to the Hamiltonian description of a time-dependent system in the
jet bundle formalism (see also [4,6], for example).

4.1. General Hamiltonian systems

A Hamiltonian system on a bundleτ : E → R is given by a sectionh of the line bundle
T ∗E → J 1τ ∗. If ω is the canonical symplectic form onT ∗E thenh∗ω is a 2-form onJ 1τ ∗,
and a Hamiltonian vector fieldXh for h satisfiesXh h∗ω = 0, 〈Xh, dt〉 = 1. In coordinates
(t, qA, p, pA) onT ∗E, if H = −p ◦ h is the (locally-defined) Hamiltonian function then

h∗ω = −dH ∧ dt + dpA ∧ dqA

so that

Xh = ∂

∂t
+
∂H

∂pA

∂

∂qA
− ∂H

∂qA

∂

∂pA
.

The Hamiltonian flow is given by the equations

q̇A = ∂H

∂pA
ṗA = − ∂H

∂qA
ṫ = 1.

In the special case where there is a global trivialization ofE = R×Q→ R, the canonical
global fibre coordinatep onT ∗E yields a global Hamiltonian functionH = −p ◦ h for each
Hamiltonianh, and then

h∗ω = −dH ∧ dt + ν∗ω0

whereω0 is the canonical symplectic form onT ∗Q andν : J 1τ ∗ → T ∗Q is the projection on
the second factor ofJ 1τ ∗ ∼= R × T ∗Q. Since in this caseT ∗E ∼= T ∗R × T ∗Q, there exists
a canonical Hamiltonianh0, induced by the zero section ofT ∗R→ R, which corresponds to
the Hamiltonian functionH = 0.

4.2. Hamiltonian systems derived from Lagrangian systems

Under certain regularity conditions, a Lagrangian can give rise to a Hamiltonian system via
the Legendre map. Any Lagrangian functionL : J 1τ → R gives rise to the Legendre map
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LegL : J 1τ → T ∗E. this may be defined either as the best fibre-wise approximation toL,
or alternatively as the representation of the Cartan 1-formθL as a differential form along the
mapJ 1τ → E (rather than, as is more usual, a differential form onJ 1τ ). With the coordinate
expression (3) forθL, we then obtain

p ◦ LegL = L− q̇A
∂L

∂q̇A

pA ◦ LegL =
∂L

∂q̇A
.

The map LegL is the ‘big Legendre map’; the corresponding ‘little Legendre map’ legL :
J 1τ → J 1τ ∗ is the composition of LegL with the projectionT ∗E → J 1τ ∗. We may check
that

legL∗

(
∂

∂t

∣∣∣∣
j1
t γ

)
= ∂

∂t

∣∣∣∣
legL(j

1
t γ )

+
∂2L

∂t∂q̇B

∣∣∣∣
j1
t γ

∂

∂pB

∣∣∣∣
legL(j

1
t γ )

legL∗

(
∂

∂qA

∣∣∣∣
j1
t γ

)
= ∂

∂qA

∣∣∣∣
legL(j

1
t γ )

+
∂2L

∂qA∂q̇B

∣∣∣∣
j1
t γ

∂

∂pB

∣∣∣∣
legL(j

1
t γ )

legL∗

(
∂

∂q̇A

∣∣∣∣
j1
t γ

)
= ∂2L

∂q̇A∂q̇B

∣∣∣∣
j1
t γ

∂

∂pB

∣∣∣∣
legL(j

1
t γ )

and

leg∗L(dt) = dt

leg∗L(dq
A) = dqA

leg∗L(dpA) =
∂2L

∂q̇A∂t
dt +

∂2L

∂q̇A∂qB
dqB +

∂2L

∂q̇A∂q̇B
dq̇B .

We say thatL is regular if legL∗ has maximal rank 2n at each point (so that legL∗
restricted to a fibre ofJ 1τ → E has maximal rankn), and thatL is hyper-regularif legL
is a diffeomorphism. Any hyper-regular Lagrangian then defines a Hamiltonian system by
settingh = LegL ◦ leg−1

L : J 1τ ∗ → T ∗E. If we let0L be the SODE field corresponding toL
then0L andXh are legL-related:

T J 1τ T J 1τ ∗

J 1τ J 1τ ∗

-

-

6 6

legL∗

legL

0L Xh

A Lagrangian that is regular but not hyper-regular defines a local Hamiltonian system
in the same way. The significance of a regular Lagrangian is that the corresponding Euler–
Lagrange equations are regular: that is, they may be solved forq̈A. Put another way, a regular
Lagrangian defines a unique SODE field0L.
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4.3. Hamiltonian representation of constrained Lagrangian systems

Let us now consider a constrained Lagrangian system onJ 1τ , with general constraints
determining a constraint submanifoldC. In the previous section we have seen that, in
a neighbourhood of a pointξ of C, the constraint relations can always be written in the
solved form (9) in terms of some appropriate bundle coordinates(t, qA, q̇α, q̇a) on J 1τ ,
with A = 1, . . . , n; a = 1, . . . m;α = m + 1, . . . n. Suppose that at each point ofC,
rankkαβ(ξ) = n − m, so that the constrained system is regular in the sense of section 3.
One consequence of this regularity is that the restriction legL

∣∣
C

is an immersion. Indeed,
consider an arbitrary pointξ ∈ C and note that, in a neighbourhood ofξ , a local basis for the
vector fields alongC that are tangent toC is given by

Wα = ∂

∂q̇α
+Baα

∂

∂q̇a
YA = ∂

∂qA
+Ha

A

∂

∂q̇a
Z = ∂

∂t
+Ha ∂

∂q̇a

with Ha
A = ∂ga/∂qA, Ha = ∂ga/∂t and, as before,Baα = ∂ga/∂q̇α. Note that theWα are

just the vertical lifts of the vector fieldsXα introduced earlier (see equations (11)). Using the
expressions for the action of legL∗ on the coordinate vector fields, listed above, and putting
ξ̄ = legL(ξ), after a straightforward computation we find

legL∗(Wα|ξ ) = kαβ(ξ) ∂

∂pβ

∣∣∣∣
ξ̄

+ hαb(ξ)

(
∂

∂pb

∣∣∣∣
ξ̄

− Bbβ(ξ)
∂

∂pβ

∣∣∣∣
ξ̄

)

legL∗(YA|ξ ) =
∂

∂qA

∣∣∣∣
ξ̄

+ · · · legL∗(Z|ξ ) =
∂

∂t

∣∣∣∣
ξ̄

+ · · ·

withhαb = gαb+Baαgab, and where the dots on the right-hand sides represent terms in(∂/∂pB)ξ̄ .
In view of the assumed regularity of(kαβ(ξ)) it is readily seen that legL∗, restricted toTξC, has
rank 2n+1−m atξ and is, therefore, injective. Since this holds for allξ ∈ C, legL |C is indeed
an immersion. (Note that the converse is not true: legL |C may be an immersion even though
the constrained Lagrangian system is not regular, because the image of a vector tangent toC at
ξ might nevertheless be in the annihilator ofTξC ⊂ TξJ 1τ .) We shall say that the constrained
system ishyper-regularif it is regular and if legL(C) is an embedded sub-manifold. The latter
in particular implies that legL |C : C → J 1τ ∗ is an injective immersion and a homeomorphism
onto its image.

Let 0 denote the SODE field onC describing the constrained Lagrangian dynamics,
and assume the constrained system is hyper-regular. We may then define a vector field
X on legL(C) by settingX = legL∗0. We may also define a restricted Hamiltonian
h̄ : legL(C)→ LegL(C) ⊂ T ∗E by

h̄ = LegL ◦( legL
∣∣
C
)−1

and, hence, a 2-formωh̄ = h̄∗(ω) on legL(C) such thatX ωh̄ then satisfies

leg∗L(X ωh̄) = η
whereη is the constraint form given by0 i∗ωL = η as in the previous section. The
Hamiltonian picture is therefore a mirror image of the Lagrangian one. Indeed, we can use
the Legendre map to obtain an immediate proof of the Hamiltonian version of our regularity
theorem.

Theorem 2. LetL : J 1τ → R define a Lagrangian system, subject to constraintsC. If the
constrained system is hyper-regular then there is a unique vector fieldX on legL(C) satisfying
the conditions
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1. 〈X, dt〉 = 1;
2. 〈X, η〉 = 0 for all 1-formsη on legL(C) such thatleg∗L(η) is a constraint form onC;
3. leg∗L(X ωh̄) is a constraint form.

In these circumstances,X = legL∗(0) where0 is the SODE field onC obtained from the
system(L,C) by theorem 1. If the system is regular rather than hyper-regular, then a similar
result holds locally.

5. Connections

We have seen that a constraint submanifoldC gives rise to a distribution, either onE (in the
case of affine constraints) or alongρ : C → E (in the case of general constraints) and that, as
a partial converse, a distribution onE transverse to the fibration overR gives rise to an affine
constraint manifold. There are, however, circumstances where some additional structure in
the problem allows us to say rather more about these distributions: these circumstances arise
when the configuration spaceE is itself fibred over some other manifold.

So suppose we have two bundlesπ : E → M and τ0 : M → R, such that
τ = τ0 ◦ π : E → R. We shall let the dimension ofE ben + 1 as before, and the dimension
of M be (n − m) + 1. The projectionπ gives rise to the tangent mapπ∗ : TE → TM and
its restriction yields the prolongationj1π : J 1τ → J 1τ0: these are both projections. On the
other hand, the dual mapπ∗ : π∗T ∗M → T ∗E is an injection on each fibre, so we may regard
the pull-back bundleπ∗T ∗M as a sub-bundle ofT ∗E. With coordinates(t, qα) onM and
(t, qα, qa) onE, and corresponding coordinates(t, qα, qa, p, pα, pa) onT ∗E, the sub-bundle
π∗T ∗M is described by them equationspa = 0. All this projects ontoJ 1τ ∗: we have a
sub-bundleπ∗J 1τ ∗0 ⊂ J 1τ ∗ described by the samem equationspa = 0.

The prolonged mapj1π gives rise to a projection

µ : J 1τ → π∗J 1τ0 = E ×M J 1τ0

defined byµ = (τ1,0, j
1π). Note thatµ is always an affine bundle, modelled on the vector

bundlepr∗1(V π) → π∗J 1τ0. This is because the difference between two jetsj1
t γ1, j1

t γ2 in
the same fibre ofJ 1τ overE is just a tangent vector toE vertical overR, and if the jets
project to the same point ofπ∗J 1τ0 underµ then the tangent vector is also vertical overM.
In coordinates, we have

j1
t γ1− j1

t γ2 =
(
q̇a(j1

t γ1)− q̇a(j1
t γ2)

) ∂

∂qa

∣∣∣∣
γ1(t)

.

Any sectionσ : π∗J 1τ0 → J 1τ of µ will define a constraint manifoldC by setting
C = σ(π∗J 1τ0). Conversely, given an affine constraint submanifoldC of fibre dimension
n − m, it is always possible to find a local fibration ofE such thatC is locally the image
of a section of the corresponding induced fibrationµ. Indeed, starting from a local bundle
chartV ⊂ E, we simply write the equations ofC in solved form with respect tom of the
induced velocity variables and then mapV to the appropriate open subset ofR(n−m)+1 using
the coordinate functions. It may, however, not be possible to find a global fibration ofE, as the
example ofE = R× S2 shows. IfC is not affine then there may not even be a local fibration
of E: with our earlier example ofE = R × R3 andC given byẋ2 + ẏ2 = 1 + z2, any such
local fibration would yield a local projectionµ which, on a fibre ofJ 1τ → E, would have to
mapR3→ S1× R. Both these obstructions are, of course, topological in nature.

When a constraint manifold is the image of anaffinesection, the corresponding distribution
will become the horizontal bundle of a connection onπ . (It is complementary to the vertical
bundleVπ precisely because it is the linear span of the image of a section, rather than an
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arbitrary vector sub-bundle ofTE.) For the image of a section which isnotaffine, the situation
is more complicated: we now have a distribution alongρ, and this will become the horizontal
bundle of a ‘parametrized connection’ in the sense described in [18].

In this situation, we take local coordinates(t, qα) on M, and (t, qα, qa) on E. Put
ga = q̇a ◦ σ , so thatga are functions onπ∗J 1τ0; the imageC of σ is then defined locally
by q̇a = ga(t, qA, q̇α). The distribution alongρ is then spanned by vector fields given in
coordinates by

∂

∂qα
+Baα

∂

∂qa

∂

∂t
+Ba

∂

∂qa

whereBaα , Ba are functions defined onC (cf equations (12)); hence

∂

∂qα
+ σ ∗(Baα)

∂

∂qa

∂

∂t
+ σ ∗(Ba)

∂

∂qa

are vector fields alongπ∗J 1τ0 → E and span the horizontal bundle of a parametrized
connection onπ . If the functionsga are affine inq̇α thenBaα ,Ba are the pullbacks of functions
onE, and so we obtain a true connection onπ .

To see how the relationship between connections and constraint manifolds affects the dual
bundle, suppose first that we have a fibrationπ : E→ M and affine constraints given by a true
connection onπ . In this situation, the horizontal bundleC of the connection is isomorphic
(as a vector bundle overE) to π∗TM, and this isomorphism restricts to an isomorphism of
affine sub-bundlesC ∼= π∗J 1τ0; consequently it defines a projectionJ 1τ → C. The dual
isomorphismC

∗ ∼= π∗T ∗M then allows us to identify the quotient bundleT ∗E/C
◦

with the
sub-bundleπ∗T ∗M ⊂ T ∗E, and hence defines a section ofT ∗E → T ∗E/C

◦
. Similarly, we

obtain a section ofJ 1τ ∗ → T ∗E/(C
◦ ⊕ 〈dt〉) whose image isπ∗J 1τ ∗0 . In other words, we

may write

T ∗E = C◦ ⊕ π∗T ∗M
and

J 1τ ∗ = (C◦ mod dt)⊕ π∗J 1τ ∗0 .

The local coordinates onπ∗T ∗M are (t, qA, pα, p) and those onT ∗E are given by
(t, qA, pα, pa, p), but the latter are not adapted to the direct sum decomposition ofT ∗E.
To define adapted coordinates, we set

Pα = pα +Baαpa, Pa = pa, P = p +Bapa (13)

on T ∗E. A similar definition (omitting the coordinateP ) may be used onJ 1τ ∗. As will be
seen in section 6, in the case of a hyper-regular constrained Lagrangian system(L,C), the
coordinates(t, qA, Pα) provide a set of natural coordinates on legL(C) in terms of which one
can write down an explicit expression for the vector fieldX = legL∗(0).

With a general constraint manifoldC, we have a rather more unusual situation: each
cotangent spaceT ∗a E may still be written as a direct sum of two subspaces, one of which is
(π∗T ∗M)a, but this direct sum is parametrized by points ofC (the other subspace is the fibre
of the Chetaev bundle overa determined by the point inC). We can express this by defining a
function8 : C ×E T ∗E → π∗T ∗M to replace the projectionpr2 : T ∗E → π∗T ∗M available
in the affine case. In coordinates,

pα ◦8(j1
t γ , ε) = pα(ε) + pa(ε)B

a
α(j

1
t γ )

p ◦8(j1
t γ , ε) = p(ε) + pa(ε)B

a(j1
t γ ).

This projects down to a function80 : C ×E J 1τ ∗ → π∗J 1τ ∗0 which, in coordinates,
is given bypα ◦ 80 = pα ◦ 8. It is evident that we may use these functions to give
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‘adapted’ local coordinates onC ×E T ∗E andC ×E J 1τ ∗, namely(t, qA, q̇α, Pα, Pa, P )
and (t, qA, q̇α, Pα, Pa), respectively. But that is quite different still from having adapted
coordinates onT ∗E andJ 1τ ∗. As a result, given a hyper-regular constrained Lagrangian
system with LagrangianL and nonlinear constraintsC, the previous construction in general
does not lead to a well-defined coordinate system on legL(C).

6. Coordinate expressions for the Hamiltonian representation

The purpose of this section is to discuss how the vector fieldX = legL∗0 can be represented in
coordinates on legL(C) and to compare this (where possible) with the analytical considerations
of the introduction. Recall thatX has a global meaning when the constrainted system is hyper-
regular, and is defined locally when it is merely assumed that thek-matrix of the system(L,C)
is regular. Since we are interested here only in the local coordinate representation ofX, the
distinction between regularity and hyper-regularity is not very relevant for the subsequent
discussion.

Throughout our analysis, we have represented the constraint equations definingC in the
form q̇a = ga(t, qA, q̇α). In the most general case, this can be done only in a neighbourhood
of each point ofC (resulting from the assumption thatC is a sub-bundle ofJ 1τ ). There
may be situations where such neighbourhoods contain complete fibres ofC. As discussed in
the previous section, a particular case where the latter situation is guaranteed to apply is the
case where there is an extra fibrationπ : E → M, and the constraints are then defined by a
(parametrized) connection associated to a sectionσ : π∗J 1τ0→ J 1τ . If that section is affine,
so that we are in the case of a true connection onπ , the right-hand sides of the constraint
equations have the affine formga = Baα(t, qA)q̇α + Ba(t, qA). We consider this simpler case
first.

Points on legL(C) are defined by

pα = i∗ ∂L
∂q̇α

pa = i∗ ∂L
∂q̇a

or, passing to the adapted fibre coordinatesPα, Pa, as defined by (13),

Pα = ∂L

∂q̇α
Pa = i∗ ∂L

∂q̇a
. (14)

We have
∂Pα

∂q̇β
= kαβ

so that, in view of the assumed regularity, the first of relations (14) can be solved for theq̇α,
yielding relations of the form

q̇α = ρα(t, qA, Pβ) (15)

as in the introduction. In the hyper-regular case, these essentially make up the map legL |C−1,
which we give a corresponding shorthand name:

ρ = legL |C−1 : legL(C)→ C.

If the constrained system is merely regular,ρ is defined only locally. Upon substituting the
relations (15) into the defining equations (14) of legL(C), we obtain explicit expressions for
the equations defining legL(C) as a submanifold ofJ 1τ ∗ and, just as the defining equations
for C, they are solved for a well identified set of variables, namely

Pa(= pa) = ρ∗i∗ ∂L
∂q̇a

. (16)
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As mentioned in the previous section, this shows indeed that we can use(t, qA, Pβ) as
coordinates on legL(C). Computing the restricted Hamiltonian̄h = LegL ◦ρ in the adapted
coordinates (13) onT ∗E, we find

P ◦ h̄ = ρ∗(P ◦ LegL |C)

= ρ∗
[
i∗
(
L− q̇A ∂L

∂q̇A

)
− Bai∗

(
∂L

∂q̇a

)]
= ρ∗L− ραPα = −H

where the Hamiltonian functionH matches that given in the introduction.
We next compute the vector fieldX which is uniquely determined by the conditions of

theorem 2. Starting from

ω = dpα ∧ dqα + dpa ∧ dqa + dp ∧ dt

= dPα ∧ dqα + dPa ∧ ηa + dP ∧ dt − Pa (dBaα ∧ dqα + dBa ∧ dt)

(the constraint formsηa, being basic forms in this affine case, look the same onT ∗E as on
J 1τ ), we obtain

ωh̄ = dPα ∧ dqα + dPa ∧ ηa − dH ∧ dt − Pa (dBaα ∧ dqα + dBa ∧ dt).

The notation for the coordinate functionsPa is maintained here for brevity, but they should of
course be replaced by the right-hand sides of the constraint equations (16). If we takeX to be
a vector field on legL(C) of the form

X = ∂

∂t
+Xα

∂

∂qα
+ (BaαX

α +Ba)
∂

∂qa
+ Yα

∂

∂Pα

where theXα andYα are as yet undetermined functions of(t, qA, Pβ), we will ensure thatX
satisfies the first two requirements of theorem 2. If in addition we wantX ωh̄ to be zero
modulo constraint formsηa, the coefficients of dPα and dqα fix the componentsXα andYα,
which are found to be given exactly by the expressions on the right-hand sides of equations (4)
and (6) in the introduction. At first sight, there are then still terms in dt to be taken care of: but
theorem 2 ensures thatX exists and there is no more freedom left, so these terms are bound to
vanish identically; one can verify that this is indeed the case. Recall that these considerations
apply to all systems with affine non-holonomic constraints, in the hyper-regular case (withX

being globally defined on legL(C)) as well as in the regular case (withX defined locally).
For nonlinear constraints, it is not possible to give a similar general prescription for the

computation of the ‘constrained Hamiltonian vector fieldX’ on legL(C), even if we assume that
the constraints come from a (parametrized) connection and are hyper-regular. The relevance of
the results of section 4 is that theorem 2 still applies, so that regularity of thek-matrix is sufficient
for the (local) existence and uniqueness ofX—and therefore there will be local coordinates in
which an expression forX can be written down. The problem is to describe such coordinates
in a way which is valid for all systems, rather than constructing them case by case. To give an
idea of the difficulty observe that, under regularity of thek-matrix, it is possible to obtain an
explicit representation ofρ = legL |C−1, via relations of the forṁqα = ρα(t, qA, pA). But,
as we have indicated, the right-hand sides will depend on all momentum variables. One could
then still obtain defining equations for legL(C) of the formpa = ρ∗i∗(∂L/∂q̇a), but again
with right-hand sides depending on both thepα andpb, so the equations would not be solved
explicitly for thepa. In fact, the domain ofρ can be extended to a neighbourhood of legL(C)

in J 1τ ∗, leading to a functionH in the same neighbourhood. A computation of (an extension
of) X in such a neighbourhood, roughly along the lines indicated above, can then be carried
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out modulo the differentials of the constraint functions. Since the constraint equations are not
available in solved form, such a procedure relies on the use of Lagrange multipliers. This, of
course, is precisely what we wished to avoid by starting the Hamiltonization process directly
from the reduced Lagrange equations on the constraint submanifoldC.

In view of these considerations, one may wonder whether passing from the Lagrangian to a
Hamiltonian context on legL(C), in the case of general nonlinear constraints, is actually worth
the effort: if no natural adapted coordinates present themselves, additional structural benefits
from a ‘Hamilton-like environment’ are not likely to be abundant. Needless to say, however,
a general procedure for the computation ofX may exist if additional regularity assumptions
would be accepted. For example, if not only thek-matrix but also the Hessian ofL is assumed
to be regular, then it turns out that(t, qA, Pα) can be used again as coordinates on legL(C) and
X can be computed explicitly in terms of these coordinates.

7. Illustrative examples

We shall now discuss three simple examples of (hyper-) regular constrained systems, illustrating
some of the characteristic features of the formalism developed in this paper. The first two
examples deal with affine constraints. In example 1, the unconstrained Lagrangian is regular,
whereas in example 2 we start from a singular Lagrangian. Example 3 deals with a singular
Lagrangian system subjected to a nonlinear constraint. The second and third examples are
merely mathematical constructs to illustrate the various subtle points which our general theory
has revealed. For instance, we need to illustrate that the procedure for passing from the reduced
Lagrangian description to an equivalent system of first-order equations really works under the
regularity of only thek-matrix. In addition, we wish to illustrate the various points made
about the role which the adapted momentum variablesPα can or cannot play in setting up
Hamilton-type equations.

Example 1. The curve of pursuit (see, e.g., [14, p 17]).Consider a pointA moving along
thex-axis of a Cartesian reference frame in a plane, which we take to be thexy-plane, and
let its distance from the originO be given by a prescribed functionf (t). A particle with unit
mass moves in the plane and is constrained by its velocity being always directed towards the
pointA.

Here we haveE ∼= R× R2, with coordinates(t, x, y). The Lagrangian of the particle is
simply its kinetic energyL = 1

2(ẋ
2 + ẏ2) and the constraint submanifoldC is defined by the

equationyẋ + (f (t)− x)ẏ = 0. Note that we do not have a global fibrationE→ M adapted
to the constraint, but we can always solve the constraint equation locally with respect to one
of the velocitiesẋ or ẏ. In particular, in a domain wherey 6= 0, we can write the constraint
equation in the form

ẋ =
(
x − f (t)

y

)
ẏ.

The constraint form is then

η = dx − x − f (t)
y

dy.

For the pull-back ofL to the constraint submanifold we immediately obtain

L = 1

2
ẏ2

[
(x − f (t))2

y2
+ 1

]
.
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Here thek-matrix reduces to a scalar and, since we are dealing with an affine constraint, we
have that

k = ∂2L

∂ẏ2 =
(x − f (t))2

y2
+ 1 6= 0

so that the constrained system is regular. Computing the vector field0 on the constraint
submanifold along the lines indicated in the proof of theorem 1, one easily finds that

0 = ∂

∂t
+
x − f
y

ẏ
∂

∂x
+ ẏ

∂

∂y
+

(x − f )ẏḟ
y2 + (x − f )2

∂

∂ẏ
.

It is interesting to compare this approach to that described, for instance, in [7], where the
constrained dynamics is obtained by taking the projection (of the restriction toC) of the
unconstrained Euler–Lagrange vector field with respect to an almost product structure defined
alongC. As pointed out at the end of section 3, that technique relies on the regularity of the
given Lagrangian.

Passing now to the Hamiltonian framework, we follow the procedure outlined in the
previous section. In terms of the ‘adapted’ momentum variables, the points on legL(C) are
given by

Py = ∂L

∂ẏ
= ẏ

[
(x − f (t))2

y2
+ 1

]
Px = i∗

(
∂L

∂ẋ

)
= x − f

y
ẏ.

Note that we can solve the first of these relations forẏ, namely

ẏ = ρ(t, x, y, Py) = y2

(x − f )2 + y2

which, upon substitution in the expression forPx , leads to the constraint equation

Px = (x − f )y
(x − f )2 + y2

Py.

The Hamiltonian functionH and the 2-formωh̄ become, respectively,

H = ρPy − L(t, x, y, ρ) = 1

2

y2

(x − f )2 + y2
P 2
y

and

ωh̄ = dPy ∧ dy + d

[
(x − f )y

(x − f )2 + y2
Py

]
∧ dη

−
[

(x − f )y
(x − f )2 + y2

Py

]
d

(
x − f
y

)
∧ dy − d

[
1

2

y2

(x − f )2 + y2
P 2
y

]
∧ dt.

Putting

X = ∂

∂t
+X

∂

∂y
+

(
x − f
y

X

)
∂

∂x
+ Y

∂

∂Py

and requiringX ωh̄ = 0(modη), we obtain, after a rather tedious but straightforward
calculation,

X = y2Py

(x − f )2 + y2
Y = − (x − f )ḟ Py

(x − f )2 + y2
.

Example 2. For this example we takeE ∼= R × R3 with coordinates(t, x, y, z). Consider a
system with LagrangianL = 1

2(ẋ
2 + ẏ + ż2), subject to the constraintż = (1 +x2)ẏ. Here we
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do have a global fibrationE→ R×R2, (t, x, y, z) 7→ (t, x, y), with (x, y) playing the role of
theqα in our discussion of the general theory. Note thatL is singular and, with the notation of
section 3, we havegxx = gzz = 1, hxx = hyy = 1, hxy = 1 + x2, whereas the other entries of
g andh are zero. The components of thek-matrix then become:kxx = 1, kyy = 1 +(1 +x2)2,
kxy = kyx = 0 so that detk > 0 and, hence, the constrained system is found to be regular. The
functionL is given by

L = 1
2(ẋ

2 + ẏ + (1 +x2)2ẏ2)

and its Hessian is precisely thek-matrix (as it should be, since we are in the affine case). The
constraint forms are multiples ofη = dz − (1 + x2) dy. The SODE-field0 on the constraint
manifoldC here becomes

0 = ∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ (1 +x2)ẏ

∂

∂z
− 2xẋẏ

1 +x2

∂

∂ẏ
.

The Legendre transformation givespx = ẋ, py = 1
2, pz = ż, so that clearly the momenta

px, py cannot be used as coordinates on the constraint manifold legL(C): in fact, in this case
we have that legL(C) = legL(J

1τ) = {py = 1
2}. Following the general procedure outlined

in the previous section, we introduce the adapted coordinatesPx, Py, Pz in terms of which the
points of legL(C) are now determined by

Px = ∂L

∂ẋ
= ẋ Py = ∂L

∂ẏ
= 1

2
+ (1 +x2)2ẏ Pz = i∗

(
∂L

∂ż

)
= (1 +x2)ẏ.

From these relations we can eliminateẋ andẏ and the constraint equation then becomes

Pz(= pz) = 1

2

2Py − 1

1 +x2
.

For the Hamiltonian functionH we obtain

H = 1

2(1 +x2)2

(
(1 +x2)2P 2

x + P 2
y − Py + 1

4

)
.

Computation ofX gives

X = ∂

∂t
+ Px

∂

∂x
+

1

2

(
2Py − 1

(1 +x2)2

)
∂

∂y
− 1

2

(
2Py − 1

1 +x2

)
∂

∂z
+
(1− x)(2Py − 1)2

(1 +x2)3

∂

∂Px

− x(2Py − 1)Px
1 +x2

∂

∂Py
.

Observe here that the given constraint equation could also have been written in the form

ẏ = ż

1 +x2

which suggests another possible fibration ofE, corresponding to the projection(t, x, y, z) 7→
(t, x, z). It so happens that there would be no need to pass to the adapted fibre coordinates
Px, Pz here, as(t, x, z, px, pz) provides a suitable set of coordinates in its own right. The
point to make, however, is that thepα coordinates cannot always be used, as the first choice
of a fibration has clearly illustrated, whereas thePα always work.

Example 3. TakeL = 1
2(ẋ

2 + ẏ2 + ż), subject to the nonlinear constraintż = −ẏ2. Again,
the given Lagrangian is singular and we have thatgxx = gyy = 1, the other entries ing being
zero. The only nonzero entries ofh arehxx = hyy = 1. We therefore obtainkxx = kyy = 1,
kxy = kyx = 0 so that detk = 1 and the constrained system is regular. Note that even
L = 1

2 ẋ
2 is singular here! Nevertheless, the regularity of thek-matrix still guarantees the



Hamiltonization of non-holonomic systems 6889

existence of a unique SODE-field describing the constrained dynamics. The constraint forms
are multiples ofη = dz + 2ẏ dy − ẏ2 dt and, with the Poincaré–Cartan 2-form being given by
ωL = dẋ ∧ θx + dẏ ∧ θy , a straightforward computation leads to

0 = ∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
− ẏ2 ∂

∂z
.

The Legendre transformation becomespx = ẋ, py = ẏ, pz = 1
2 and the constraint

manifold on the Hamiltonian side is given by legL(C) = legL(J
1τ) = {pz = 1

2}. In agreement
with the discussion in the previous section, and contrary to the situation in the affine case,
there is no general procedure available here for selcting ‘adapted coordinates’. As a matter
of fact, an attempt to introducePα coordinates as before would lead toPx = px , Py = 0
which, obviously, is not an appropriate set of coordinates. On the other hand, a coordinate
representation of the Hamiltonian picture which does work for this example, is the following.
In the original coordinates we find that

h̄∗ω = dpx ∧ dx + dpy ∧ dy − dH ∧ dt

where

H = −L + ẋ
∂L

∂ẋ
+ ẏ

∂L

∂ẏ
+ ẏ2pz

= 1
2p

2
x + 1

2p
2
y.

For the constrained Hamiltonian dynamics we then obtain

X = ∂

∂t
+ px

∂

∂x
+ py

∂

∂y
− p2

y

∂

∂z
.
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